CR-Submanifolds of an (ϵ)-Lorentzian ParaSasakian Manifold Endowed with Quarter Symmetric Non-Metric Connection

N.V.C.Shukla and Jyoti Jaiswal

Abstract

In this paper we study quarter-symmetric non metric connection in CR-Submanifolds of (ϵ)- LP-Sasakian manifold. Some results related to this connection are obtained and studied. Also we dealt with totally geodesic and umbilic.

2010 Mathematics Subject Classification- 53C50, 53C22
Key words- (ϵ)-Lorentzian Para-sasakian manifold, quarter symmetric, non metric, distribution geodesic, CR-Submanifolds, umbilic.

1 INTRODUCTION

CR-submanifolds were introduced first in kaehler geometry. It works as a bridge between complex and totally real submanifolds. In 1978, A. Bejancu introduced the notion of CR-submanifolds of the kaehler manifold [1, 2]. After that CR-submanifolds of Sasakian manifold were studied by M.Kobayashi in [7]. In 1989 K.Motsumoto introduced the notion of the Lorentzian para-Sasakian manifold [5]. I.Mihai and R.Rosca [4] defined the same idea independently and several others authors were studied Lorentzian para-Sasakian manifold (briefly LPSasakian Manifold).

In [3] Bejancu and Duggal introduced (ϵ)-Sasakian manifolds. Later, Xufeng and Xiaoli [14] showed that every (ϵ)-Sasakian manifold must be real hypersurface of some indefinite Kahler manifold. In 2009, U.C. De and A. sarkar [13] give the idea of (ϵ)-Kenmotsu manifolds. Recently, in 2012 R. Prasad and V. srivastva [8] introduced the (ϵ)-Lorentzian Para-sasakian manifold.

- N.V.C Shukla, Department of Mathematics and Astronomy, University of Lucknow, Lucknow, India,PH-09450639931. E-mail: nvcshukla72@gmail.com
- Jyoti Jaiswal,Research scholar, Department of Mathematics and Astronomy, University of Lucknow, Lucknow, India,PH-09452568156.
E-mail: jollyjoi.jaiswal@gmail.com

In this paper we study CR-submanifolds of (ϵ)-Lorentzian Para-sasakian manifold endowed with quarter symmetric non-metric connection which include the usual LPsasakian manifold. Let ∇ be a linear connection in n
dimensional differentiable manifold M . The Torsion tensor is defined as
(1.1) $T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$

And the curvature tensor R is defined as

$$
\begin{equation*}
R(X, Y, Z)=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{1.2}
\end{equation*}
$$

If the torsion tensor T vanishes then the connection ∇ is symmetric otherwise non symmetric. Again if $\nabla_{g}=0$, then ∇ is metric connection otherwise it is non metric connection, where g is Riemannian metric in M . S.Golab[9] introduced the idea of a quarter symmetric connection. A linear connection is said to be quarter symmetric connection if its torsion tensor is the form of

$$
\begin{equation*}
T(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y \tag{1.3}
\end{equation*}
$$

Where η is 1 -form. This was further developed by Yano and Kon [6], Rastogi [10], Mishra and Pandey [9], Mukhopadhyay, Roy and Barua [12] and many others authors.

This paper is organized as follows:

In section 2, we give the brief introduction of (ϵ) Lorentzian Para-sasakian manifold. In section 3 we prove some basic lemmas on (ϵ)-Lorentzian Para-sasakian manifold. We discuss the parallel distribution in section 4. At last in section 5 we prove some results base on totally geodesic and umbilic.

2. PRELIMINARIES

An n dimensional differentiable manifold \bar{M} is called (ε)Lorentzian para-Sasakian manifold if:

$$
\begin{align*}
& \phi^{2}=I+\eta(X) \xi, \eta(\xi)=-1, \quad \phi \circ \xi=0 \tag{2.1}\\
& g(\xi, \xi)=\varepsilon, \quad \eta(X)=\varepsilon g(X, \xi) \\
& g(\phi X, \phi Y)=g(X, Y)+\varepsilon \eta(X) \eta(Y)
\end{align*}
$$

Where X and Y are the vector fields tangent to \bar{M} and ε is 1 or -1 according as ξ is space like or time like vector field.

Also in (ε)-Lorentzian para-Sasakian manifold, we have

$$
\begin{equation*}
\left(\overline{\bar{\nabla}}_{x} \phi\right) Y=g(X, Y) \xi+\varepsilon \eta(Y) X+2 \varepsilon \eta(X) \eta(Y) \tag{2.4}
\end{equation*}
$$

where $\overline{\bar{\nabla}}$ denotes the operator of covariant differetiation with respect to the Lorentzian metric g on \bar{M}.

$$
\begin{gather*}
\bar{\nabla}_{X} \xi=\varepsilon \phi X \tag{2.5}\\
\Phi(X, Y)=g(X, \phi Y) \tag{2.6}\\
g(\phi X, Y)=\left(\overline{\bar{\nabla}}_{X} \eta\right) Y \tag{2.7}
\end{gather*}
$$

Where $\Phi(X, Y)$ is symmetric $(0,2)$ tensor field.
Now, we remark the owning the existence of 1 -form η, we can define the quarter symmetric non metric connection $\bar{\nabla}$ by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\overline{\bar{\nabla}}_{X} Y+\varepsilon \eta(Y) \phi X+a(X) \phi Y \tag{2.8}
\end{equation*}
$$

Such that

$$
\begin{align*}
& \left(\bar{\nabla}_{X} g\right)(Y, Z)=-\eta(Y) g(\phi X, Z)- \\
& \eta(Z) g(\phi X, Y)-2 \alpha(X) \phi Y \tag{2.9}
\end{align*}
$$

For any $X, Y \in T \bar{M}$ and ξ is vector field.
Using (2.4) and (2.8), we get

$$
\begin{align*}
& \left(\bar{\nabla}_{X} \phi\right) Y=g(X, Y) \xi-\varepsilon \eta(X) \eta(Y) \xi \\
& +2 \varepsilon \eta(X) \eta(Y) \tag{2.10}
\end{align*}
$$

This implies

$$
\begin{align*}
& \left(\bar{\nabla}_{X} \phi\right) Y+\left(\bar{\nabla}_{Y} \phi\right) X=2 g(X, Y) \xi- \tag{2.11}\\
& 2 \varepsilon \eta(X) \eta(Y) \xi+4 \varepsilon \eta(X) \eta(Y)
\end{align*}
$$

From (2.5) and (2.8), we get

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=0 \tag{2.12}
\end{equation*}
$$

Definition : An m dimensional Riemannian submanifold M of (ε)-Lorentzian para-Sasakian manifold \bar{M} is called a CR-Submanifold if ξ is tangent to M and there exists a differentiable distribution $D: x \in M \rightarrow D_{x} \subset T_{x} M$ such that
(i) The distribution D_{x} is invariant under ϕ, that is

$$
\phi D_{X} \subset D_{X} \text { for each } x \in M
$$

(ii) The complementary orthogonal distribution $D^{\perp}: x \in M \rightarrow D_{X}^{\perp} \subset T_{X} M$ of D is anti-invariant under ϕ that is

$$
\phi D_{X}^{\perp} \subset T_{X}^{\perp} M \quad \text { for each } x \in M
$$

Where $T_{x} M$ and $T_{X}^{\perp} M$ are the tangent space and the normal space of M at x respectivly.

If $\operatorname{dim} D_{x}^{\perp}=0$ (resp., $\operatorname{dim} D_{x}=0$), then the $C R$ Submanifold is called an invariant (resp., anti-invariant) submanifold. The distribution D (resp., D^{\perp}) is called the horizontal (resp., vertical) distribution.

Also the pair $\left(D, D^{\perp}\right)$ is called ξ-horizontal (resp., vertical) if $\xi_{x} \in D_{x}$ (resp., $\xi_{X} \in D^{\perp}$)[10].

For any vector field X tangent to M, we put [10]

$$
\begin{equation*}
X=P X+Q X \tag{2.13}
\end{equation*}
$$

For any vector field normal to M, we have

$$
\begin{equation*}
\phi N=B N+C N \tag{2.14}
\end{equation*}
$$

Where $B N$ and $C N$ denote the tangential and normal component of ϕN respectively.

Let $\bar{\nabla}$ (resp., ∇) be the covariant differentiation with respect to the Levi-civita connection on \bar{M} (resp., M). The Gauss and Weingarten formulas for M are respectively given by

$$
\begin{gather*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.15}\\
\bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N \tag{2.16}
\end{gather*}
$$

For $\mathrm{X}, \mathrm{Y} \in \mathrm{TM}$ and $N \in T^{\perp} M$ where h (resp., A) is second fundamental form (resp., tensor) of M in \bar{M} and ∇^{\perp} denotes the normal connection. Moreover, we have

$$
\begin{equation*}
g(h(X, Y), N)=g\left(A_{N} X, Y\right) \tag{2.17}
\end{equation*}
$$

3. SOME BASIC LEMMAS

Lemma 3.1: Let M be a CR-submanifold of an (ε)Lorentzian para-Sasakian manifold \bar{M} with quarter symmetric non metric connection. Then

$$
\begin{align*}
& P\left(\nabla_{X} \phi P Y\right)+P\left(\nabla_{Y} \phi \mathrm{PX}\right)-P\left(A_{\phi Q Y} X\right)- \\
& P\left(A_{\phi Q X} Y\right)=2 g(X, Y) P \xi-2 \varepsilon \eta(X) \eta(Y) P \xi \tag{3.1}\\
& +\phi\left(P \nabla_{X} Y\right)+\phi\left(P \nabla_{Y} X\right)+4 \varepsilon \eta(X) \eta(Y) \\
& Q\left(\nabla_{X} \phi P Y\right)+Q\left(\nabla_{Y} \phi P X\right)-Q\left(A_{\phi Q Y} X\right)-
\end{align*}
$$

$$
\begin{equation*}
Q\left(A_{\phi Q X} Y\right)=2 B h(X, Y)+2 g(X, Y) Q \xi \tag{3.2}
\end{equation*}
$$

$$
-2 \varepsilon \eta(X) \eta(Y) Q \xi
$$

$$
\begin{aligned}
& h(X, \phi P Y)+h(Y, \phi P X)+\nabla_{X}^{\perp} \phi Q Y+\nabla_{Y}^{\perp} \phi Q X \\
& =2 C h(X, Y)+\phi Q \nabla_{X} Y+\phi Q \nabla_{Y} X
\end{aligned}
$$

For all $X, Y \in T M$.
Proof. By the virtue of (2.11), (2.13), (2.14), (2.15) and (2.16) we get

$$
\begin{align*}
& \nabla_{X} \phi P Y+\nabla_{Y} \phi P X+h(X, \phi P Y)+ \\
& h(Y, \phi P X)-A_{\phi Q Y} X-A_{\phi Q X} Y+\nabla_{X}^{\perp} \phi Q Y \tag{3.4}\\
& +\nabla_{Y}^{\perp} \phi Q X=2 g(X, Y) \xi-2 \varepsilon \eta(X) \eta(Y) \xi+ \\
& \phi\left(\nabla_{X} Y\right)+\phi\left(\nabla_{Y} X\right)+4 \varepsilon \eta(X) \eta(Y)
\end{align*}
$$

After equating the horizontal, vertical and normal components of the above equation (3.4) we get the lemma.

Lemma 3.2: Let M be a CR-submanifold of an (ε)Lorentzian para-Sasakian manifold \bar{M} with a quarter symmetric non metric connection. Then

$$
\begin{aligned}
& 2\left(\bar{\nabla}_{X} \phi\right) Y=\nabla_{X} \phi Y-\nabla_{Y} \phi X+h(X, \phi Y) \\
& -h(Y, \phi X)+2 g(X, Y) \xi-2 \varepsilon \eta(X) \eta(Y) \xi \\
& +4 \varepsilon \eta(X) \eta(Y)-\phi[X, Y]
\end{aligned}
$$

For any $X, Y \in D$
Proof. By using the Gauss formula (2.15), we get

$$
\begin{align*}
& \bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X=\nabla_{X} \phi Y-\nabla_{Y} \phi+ \\
& h(X, \phi Y)-h(Y, \phi X) \tag{3.6}
\end{align*}
$$

Also we know

$$
\begin{align*}
& \bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X=\nabla_{X} \phi Y-\nabla_{Y} \phi X \\
& +\phi[X, Y] \tag{3.7}
\end{align*}
$$

From (3.6) and (3.7), we get

$$
\begin{align*}
& \bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X=\nabla_{X} \phi Y-\nabla_{Y} \phi \\
& +h(X, \phi Y)-h(Y, \phi X)-\phi[X, Y] \tag{3.8}
\end{align*}
$$

Again from (2.11) and (3.8), we get the result.

Lemma 3.3: Let M be a CR-submanifold of an (ع)Lorentzian para-Sasakian manifold \bar{M} with a quarter symmetric non metric connection. Then

$$
\begin{align*}
& 2\left(\bar{\nabla}_{Y} \phi\right) Z=2 g(Y, Z) \xi-2 \varepsilon \eta(Y) \eta(Z) \xi \\
& +4 \varepsilon \eta(Y) \eta(Z)-A_{\phi Z} Y+\nabla_{Y}^{\perp} \phi Z-A_{\phi Y} Z \tag{3.9}\\
& +\nabla_{Z}^{\perp} \phi Y-\phi[Y, Z]
\end{align*}
$$

For any $Y, Z \in D^{\perp}$.
Proof. From Weingarten formula (2.16), we get

$$
\begin{align*}
& \bar{\nabla}_{Y} \phi Z-\bar{\nabla}_{Z} \phi Y=-A_{\phi Z} Y+A_{\phi Y} Z \tag{3.10}\\
& +\nabla_{Y}^{\perp} \phi Z-\nabla_{Z}^{\perp} \phi Y
\end{align*}
$$

Also we know that

$$
\begin{align*}
& \bar{\nabla}_{Y} \phi Z-\bar{\nabla}_{Z} \phi Y=\left(\bar{\nabla}_{Y} \phi\right) Z-\left(\bar{\nabla}_{Z} \phi\right) Y \tag{3.11}\\
& +\phi[Y, Z]
\end{align*}
$$

Now from (3.10) and (3.11), we get

$$
\begin{align*}
& \left(\bar{\nabla}_{Y} \phi\right) Z-\left(\bar{\nabla}_{Z} \phi\right) Y=-A_{\phi Z} Y+A_{\phi Y} Z \tag{3.12}\\
& +\nabla_{Y}^{\perp} \phi Z-\nabla_{Z}^{\perp} \phi Y-\phi[Y, Z]
\end{align*}
$$

Also for an (ε)-Lorentzian para-Sasakian manifold \bar{M} with a quarter symmetric non metric connection, we have

$$
\begin{align*}
& \left(\bar{\nabla}_{Y} \phi\right) Z+\left(\bar{\nabla}_{Z} \phi\right) Y=2 g(Y, Z) \xi \tag{3.13}\\
& -2 \varepsilon \eta(Y) \eta(Z) \xi+4 \varepsilon \eta(Y) \eta(Z)
\end{align*}
$$

By adding (3.12) and (3.13), we have the lemma.

Lemma 3.4: Let M be a CR-submanifold of an (ε)Lorentzian para-Sasakian manifold \bar{M} with a quarter symmetric non metric connection. Then

$$
\begin{align*}
& 2\left(\bar{\nabla}_{X} \phi\right) Y=2 g(X, Y) \xi-2 \varepsilon \eta(X) \eta(Y) \xi \\
& +4 \varepsilon \eta(X) \eta(Y)-A_{\phi Y} X+\nabla_{X}^{\perp} \phi Y \tag{3.14}\\
& -\nabla_{Y} \phi X-h(Y, \phi X)-\phi[X, Y] \tag{4.4}
\end{align*}
$$

(2.18) gives,

$$
\begin{align*}
& B h(X, Y)=\varepsilon \eta(X) \eta(Y) Q \xi- \\
& g(X, Y) Q \xi \tag{4.2}\\
& \phi h(X, Y)=B h(X, Y)+\operatorname{Ch}(X, Y) \tag{4.3}\\
& \phi h(X, Y)=\varepsilon \eta(X) \eta(Y) Q \xi- \\
& g(X, Y) Q \xi+\operatorname{Ch}(X, Y)
\end{align*}
$$

From (3.2), we have

$$
\begin{align*}
& h(X, \phi Y)+h(Y, \phi X)=2 \phi h(X, Y)+ \\
& 2 g(X, Y) Q \xi-2 \varepsilon \eta(X) \eta(Y) Q \xi \tag{4.5}
\end{align*}
$$

By putting $X=\phi X$ in equation (4.5), we get

$$
\begin{align*}
& h(\phi X, \phi Y)+h(Y, X)=2 \phi h(\phi X, Y) \\
& +2 g(\phi X, Y) Q \xi \tag{4.6}
\end{align*}
$$

Again replace $\mathrm{Y}=\phi \mathrm{Y}$ in equation (4.5), we get

$$
\begin{align*}
& h(X, Y)+h(\phi Y, \phi X)=2 \phi h(X, \phi Y) \\
& +2 g(X, \phi Y) Q \xi \tag{4.7}
\end{align*}
$$

Hence from (4.6) and (4.7), we get

$$
\begin{align*}
& \phi h(\phi X, Y)-\phi h(X, \phi Y) \\
& +2 g(\phi X, Y) Q \xi=0 \tag{4.8}
\end{align*}
$$

Operating ϕ on both side, we have the theorem.
Now for D^{\perp} we prove the following theorem:

Theorem 4.2: Let M be a ξ-vertical CR-submanifold of an (ع)-Lorentzian para-Sasakian manifold \bar{M} quarter
symmetric non metric connection. If the distribution D^{\perp} is parallel with respect to the connection on M , then

$$
\begin{equation*}
\left(A_{\phi Z} Y-A_{\phi Y} Z\right) \in D^{\perp} \tag{4.9}
\end{equation*}
$$

Proof. Using the Weingarten formula (2.16), we get

$$
\begin{align*}
& \bar{\nabla}_{Z} \phi Y-\bar{\nabla}_{Y} \phi Z=-A_{\phi Y} Z+A_{\phi Z} Y \\
& +\nabla_{Z}^{\perp} \phi Y-\nabla_{Y}^{\perp} \phi Z \tag{4.10}
\end{align*}
$$

We know that

$$
\begin{align*}
& \bar{\nabla}_{Z} \phi Y-\bar{\nabla}_{Y} \phi Z=\left(\bar{\nabla}_{Z} \phi\right) Y-\left(\bar{\nabla}_{Y} \phi\right) Z \\
& -\phi\left(\bar{\nabla}_{Y} Z\right)+\phi\left(\bar{\nabla}_{Z} Y\right) \tag{4.11}
\end{align*}
$$

From (4.10) and (4.11), we get

$$
\begin{aligned}
& \left(\bar{\nabla}_{Z} \phi\right) Y-\left(\bar{\nabla}_{Y} \phi\right) Z-\phi\left(\bar{\nabla}_{Y} Z\right)+\phi\left(\bar{\nabla}_{Z} Y\right) \\
& =-A_{\phi Y} Z+A_{\phi Z} Y+\nabla_{Z}^{\perp} \phi Y-\nabla_{Y}^{\perp} \phi Z
\end{aligned}
$$

Taking the inner product in (4.12) with respect to $\mathrm{X} \in \mathrm{D}, \mathrm{We}$ have

$$
\begin{equation*}
g\left(-A_{\phi Y} Z, X\right)+g\left(A_{\phi Z} Y, X\right)=0 \tag{4.13}
\end{equation*}
$$

Which implies

$$
\begin{equation*}
g\left(A_{\phi Z} Y-A_{\phi Y} Z, X\right)=0 \tag{4.14}
\end{equation*}
$$

Which gives the result.

5. TOTALLY GEODESIC

Definition : A CR-submanifold is said to be D-totally geodesic (resp. D^{\perp}-totally geodesic) if $h(X, Z)=0$ for all $X, Y \in D$ (resp., $h(X, Z)=0$, for all $X, Y \in D^{\perp}$).

Theorem 5.1: Let M be a CR-submanifold of an (ε) Lorentzian para-Sasakian manifold \bar{M} with a quarter symmetric non metric connection.
(i) Let M is D-totally geodesic if and only if $A_{N} X \in D^{\perp}$
(ii) Let M is D^{\perp}-totally geodesic if and only if $A_{N} X \in D$

Proof. From (2.17) and hypothesis (i), We have

This implies

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=0=g(h(X, N), Y) \tag{5.1}
\end{equation*}
$$

Hence M is totally geodesic.
Similarly we prove the (ii).
Definition : A CR-submanifold with quarter symmetric non metric connection is said to be mixed totally geodesic if $h(X, Z)=0$ for all X belongs to horizontal distribution D and Y belongs to vertical distribution .

Lemma 5.2: Let M be a CR-submanifold of $(\boldsymbol{\varepsilon})$-Lorentzian para-Sasakian manifold M with the quarter symmetric non metric connection. Then M is mixed totally geodesic if and only if

$$
A_{N} X \in D .
$$

Lastly we study the umbilic,
Definition : A CR-Submanifold of ($\boldsymbol{\varepsilon}$)-Lorentzian ParaSasakian manifold M with quarter symmetric non metric connection is called D-umbilic (recp. D^{\perp}-umbilic) if

$$
\begin{equation*}
h(X, Y)=g(X, Y) H \tag{5.2}
\end{equation*}
$$

for all $\mathrm{X}, \mathrm{Y} \in D \quad\left(\operatorname{resp} . X, Y \in D^{\perp}\right)$ where H is mean curvature vector field.

Lemma 5.3: Let M be a D-umbilic ξ-horizontal CRsubmaifold of a (ε)-Lorentzian Para- Sasakian manifold M with the quarter symmetric non metric connection, then M is D-totally geodesic.

Proof. Let M be D-umbilic ξ-horizontal CR-Submanifold with the quarter symmetric non metric connection, then by putting $X=Y=\xi$ in (5.2), we get

$$
\begin{equation*}
\mathrm{H}=0 \tag{5.3}
\end{equation*}
$$

now using (5.3) , we have

$$
h(X, Y)=0
$$

which proves that M is D -totally geodesic.

REFERENCES

[1] A. Bejancu, CR-submanifolds of a Kaehler manifold, I,Proc.Amer. Math. Soc. 69 (1978), no. 1, 135-142.
[2] A.Bejancu and N.Papaghuic, CR-submanifolds of Kenmotsu manifold, Rend. Mat.7(1984), no.4,607-622.
[3] A.Bejancu and K.L.Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int.J. Math. Sci. 16(1993), no. 3, 545-556.
[4] I.Mihai and R.Rosca, On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Publ., Singnapore,(1992) 155-169.
[5] K.Matsumoto, On Lorentzian Para-contact manifolds, Bull. Yamagata Uni. Natur.Sci.12(1989), no. 2,151-156.
[6] K.Yano and M.Kon, Contact CR-Submanifolds, Kodai Math. J. 5(1982), no. 2, 238-252
[7] M.Kobayashi, CR-submanifolds of a Sasakian manifold, Tensor (N.S.)35(1981) , no.3,297-307.
[8] R.Prasad and V. srivastava, On (ϵ)-Lorentzian paraSasakian manifolds, Commun. Korean Math. Soc. 27(2012), no. 2, 297-306.
[9] R.S.Mishra and S.N.Pandey (1980), On quarter symmetric metric F-connection, Tensor, N.S., no. 34, 1-7
[10] S.C. Rastogi, On quarter symmetric metric connection, C.R. Acad. Sci. Sci. Bulgar, 31(1978), 811-814.
[11] S.Golab, On semi-symmetric and quarter symmetric linear connections, Tensor (N.S.) 35(1981), no. 2, 249-254.
[12] S. Mukhopadhyay, A.K. Roy, B. Barua, (1991), Some properties of a quarter-symmetric metric connection on a Riemannian manifold, Soochow J. Math.17, 205-211.
[13] U.C.De and A.Sarkar, On (ε)-Kenmotsu manifolds, Hardonic J. 32(2009), no.2, 231-242.
[14] X.Xufeng and C.Xiaoli, Two theorem on (ε)-Sasakian manifolds, Int.J.Math.Math.Sci. 21 (1998), no. 2, 249-254

